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Abstract 8 

Pharmaceuticals and personal care products are emerging contaminants that are increasingly detected 9 

in the environment worldwide. Certain classes of pharmaceuticals, such as selective serotonin reuptake 10 

inhibitors (SSRIs), are a major environmental concern due to their widespread use and the fact that 11 

these compounds are designed to have biological effects at low doses. A complication in predicting toxic 12 

effects of SSRIs in nontarget organisms is that their mechanism of action is not fully understood. To 13 

better understand the potential toxic effects of SSRIs, we employed an ultra-low input RNA-sequencing 14 

method to identify potential pathways that are affected by early exposure to two SSRIs (fluoxetine and 15 

paroxetine). We exposed wildtype zebrafish (Danio rerio) embryos to 100 µg/L of either fluoxetine or 16 

paroxetine for 6 days before extracting and sequencing mRNA from individual larval brains. Differential 17 

gene expression analysis identified 1550 genes that were significantly affected by SSRI exposure with a 18 

core set of 138 genes altered by both SSRIs. Weighted gene co-expression network analysis identified 7 19 

modules of genes whose expression patterns were significantly correlated with SSRI exposure. 20 

Functional enrichment analysis of differentially expressed genes as well as network module genes 21 

repeatedly identified various terms associated with mitochondrial and neuronal structures, 22 

mitochondrial respiration, and neurodevelopmental processes. The enrichment of these terms indicates 23 
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that toxic effects of SSRI exposure are likely caused by mitochondrial dysfunction and subsequent 24 

neurodevelopmental effects. To our knowledge, this is the first effort to study the tissue-specific 25 

transcriptomic effects of SSRIs in developing zebrafish, providing specific, high resolution molecular data 26 

regarding the sublethal effects of SSRI exposure.  27 

Keywords: selective serotonin reuptake inhibitors; fluoxetine; paroxetine; toxicogenomics; SMART-seq; 28 

zebrafish; neurodevelopment 29 

1. Introduction 30 

Pharmaceuticals and personal care products (PPCPs) are a diverse and widely used group of 31 

emerging contaminants. Environmental researchers are increasingly detecting PPCPs, such as selective 32 

serotonin reuptake inhibitor (SSRI) antidepressants, in surface waters, sediments, and fish tissues, with 33 

body burdens ranging from parts per trillion to parts per billion levels (Metcalfe et al. 2010; Lara-34 

Martin et al. 2015; Fick et al. 2009). While manufacturing and improper disposal are potential sources 35 

of environmental contamination, excretion of ingested pharmaceuticals into municipal wastewater 36 

systems is the predominant source of pharmaceuticals released into the environment (Williams 2008). 37 

The widespread use of these pharmaceuticals, coupled with typically low removal efficiencies of 38 

wastewater treatment plants, has resulted in continuous environmental contamination (Ternes et al. 39 

2004; Kolpin et al. 2002; Lajeunesse et al. 2011).  40 

The underlying mechanism of action SSRIs is still unclear despite widespread human use. 41 

Following the monoamine theory of depression, SSRIs and other antidepressants were thought to 42 

increase the free concentration of neurotransmitters like serotonin, norepinephrine, or dopamine at 43 

the synaptic cleft (Fuller and Beasley 1991). However, the delayed timing of therapeutic effect, low 44 

response rate, and high incidence of relapse has thrown into question whether this is truly their 45 

mechanism of action (Kirsch 2019). Current alternative hypotheses of SSRI mechanisms of action 46 
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include potential anti-inflammatory properties, effects on neural circuitry, and altered neurogenesis, 47 

but this still remains an active area of research (Rahmani et al. 2013; Walker 2013; McAvoy et al. 48 

2015). Therefore, the sublethal effects of these compounds on non-target organisms is unpredictable. 49 

SSRIs are specifically designed to induce biological effects at low doses with chronic exposure 50 

(Ankley et al. 2007). Thus, even though SSRIs are typically present in the environment at much lower 51 

concentrations than other classes of contaminants, the environmental concern is real. Moreover, 52 

experimental studies have shown that fish repeatedly exposed to modest levels of SSRIs 53 

bioaccumulate the pharmaceuticals to levels that exceed therapeutic concentrations in humans. The 54 

potential effects of this bioaccumulation still remain unclear (Valenti et al. 2012). Previous studies 55 

have shown that sublethal exposure to SSRIs can significantly alter fish behavior, physiology, and gene 56 

expression. For example, short term sertraline, citalopram, and fluoxetine exposure can decrease prey 57 

capture ability, predator escape, and reproductive behaviors in a number of fish species (Hedgespeth, 58 

Nilsson, and Berglund 2014; Kellner et al. 2015; Gaworecki and Klaine 2008; Bisesi et al. 2016; Painter 59 

et al. 2009; Pelli and Connaughton 2015; Perreault, Semsar, and Godwin 2003; Weinberger and Klaper 60 

2014). Other studies found that fluoxetine exposure is associated with altered ovarian gene expression 61 

and decreased egg production in zebrafish (Danio rerio) as well as increased vitellogenin expression in 62 

male fathead minnows (Pimephales promelas), indicating possible endocrine disrupting properties 63 

(Schultz et al. 2010; Lister et al. 2009).  64 

Transcriptomics has become an integral tool in toxicology and pharmacology as the ability to 65 

broadly assay whole transcriptomes allows for the discovery of targeted or key pathways without a 66 

priori information on the effected genes. Additionally, recent improvements in sequencing 67 

technologies have allowed for single-cell and low input sequencing methods like SMART-seq, CEL-seq, 68 

Drop-seq, etc., providing high cellular resolution and more detailed information at increasingly minute 69 

scales (Hwang, Lee, and Bang 2018; Baran-Gale, Chandra, and Kirschner 2018). These high resolution 70 
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sequencing methods have proven to be invaluable in studying complex biological problems like 71 

reconstructing cell lineages, characterizing risk factors and identifying candidate genes of mental 72 

disorders like schizophrenia, or elucidating mechanisms of toxicity (Raj, Gagnon, and Schier 2018; 73 

Fromer et al. 2016; Thyme et al. 2019; Zhang et al. 2019).  74 

In addition to the ever-improving technological aspects of transcriptomics, growing public 75 

resources, such as gene ontology databases, further empower scientists to study complex systems by 76 

contextualizing sequencing data with up-to-date biological insight (Alexander-Dann et al. 2018). 77 

Coupling the data generated by sequencing experiments with systems biology approaches like network 78 

analyses has proven to be a powerful method for revealing gene expression patterns, which can 79 

greatly facilitate molecular mechanism identification (Wang and Wang 2019; Alexander-Dann et al. 80 

2018). Network-based approaches incorporate gene expression patterns to infer correlation and 81 

presume biological interaction among genes, including those that did not differ significantly from 82 

controls (Fromer et al. 2016; Wang and Wang 2019). For example, network analyses allowed Maertens 83 

et al. (2015) to identify biological pathways impacted by toxic MPTP (methyl-4-phenyl-1,2,3,6-84 

tetrahydropyridine) exposure. Network analyses were also successfully used to develop biologically 85 

motivated candidate biomarker genes of sexually dimorphic patterns in zebrafish (Huang et al. 2018; 86 

Wong, McLeod, and Godwin 2014). Systems biology approaches like weighted gene co-expression 87 

network analysis (WGCNA) can therefore be used to both broaden the scope of genes considered for 88 

further study and focus on biologically relevant pathways (Zhang and Horvath 2005). 89 

We have previously shown that repeated exposure to SSRIs can significantly alter the 90 

spontaneous swimming behavior of larval zebrafish during the visual motor response, causing a 91 

consistent hypoactive response relative to control siblings (Huang, Sirotkin, and McElroy 2019). 92 

However, the mechanism causing these behavioral effects is unknown. In this study, we assessed the 93 

molecular determinants of the behavioral effects of sublethal exposure to SSRIs by leveraging a low 94 
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input RNA-sequencing toxicogenomics approach. Zebrafish embryos were exposed to the SSRIs 95 

fluoxetine and paroxetine at doses that consistently alter larval zebrafish swimming behavior during 96 

the visual motor response (Huang, Sirotkin, and McElroy 2019). Individual brains were dissected out 97 

and sequenced using SMART-seq v.4 technology. In addition to identifying transcriptome-wide changes 98 

by differential gene expression analysis, we used WGCNA to identify modules of genes significantly 99 

correlated with SSRI exposure. Functional analysis identified multiple terms related to mitochondrial 100 

function and neurodevelopment, implying that SSRI toxicity in developing fish involves mitochondrially 101 

mediated neurodevelopmental abnormalities.  102 

2. Materials and Methods 103 

2.1 Animal exposure and tissue collection 104 

Adult wildtype zebrafish, a hybrid of Tubigen Longfin/Brian’s wild-type strain (TLB), were 105 

maintained at 28.5°C under 13/11 hours light/dark cycle and fed Gemma micropellets  (2 days a week)  106 

or newly hatched brine shrimp (5 days a week) following protocols approved by Stony Brook University’s 107 

Institutional Animal Care and Use Committee.  108 

Sibling embryos from a single pair of TLB adults were dechorionated using a dilute protease 109 

solution (1 mg/ml Pronase, Sigma Aldrich) and exposed in groups of 25 at sphere stage (4 hours post 110 

fertilization) to 100 µg/L fluoxetine or paroxetine or control embryo media in 100 mm diameter plastic 111 

petri dishes lined with 1 % agarose. Eighty percent of the exposure solution was renewed daily until 6 112 

days post fertilization. We have previously shown that repeated exposure to SSRIs at this dose 113 

significantly alters the spontaneous swimming behavior of larval zebrafish during the visual motor 114 

response resulting in hypoactivity (Huang, Sirotkin, and McElroy 2019). We screened treated larvae for 115 

survival and morphological deformities daily and found no effects of fluoxetine or paroxetine on larvae 116 

development or survival.  117 
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Individual larval brain tissue was collected for RNA-sequencing at 6 days post fertilization 118 

following the dissection process outlined by Vargas et al. (2011). Briefly, larvae were anesthetized with 119 

ice water and dorsally mounted in 2 % low melting agarose in a 60 mm plastic petri dish and were 120 

bathed with artificial cerebrospinal fluid (131 mM NaCl, 2 mM KCl, 1.25 mM KH2PO4, 2 mM MgSO4, 10 121 

mM glucose, 2.5 mM CaCl2, 20 mM NaHCO3). Whole brains were removed with insect pins (size 00), 122 

transferred to individual 1.5 ml plastic capped tubes, and homogenized in 200 µl Trizol reagent by 123 

vigorous vortexing before storing at -80°C. 124 

2.2 RNA-sequencing  125 

For each brain tissue sample, total mRNA was extracted using the Direct-zol RNA extraction kit 126 

(Zymo) and treated with DNase (TurboDNase, Invitrogen) to remove gDNA contamination. RNA 127 

quantification and quality were evaluated using a Qubit fluorometer (Invitrogen) and Bioanalyzer 128 

(Agilent). Only samples with RIN scores greater than 7 were kept for further analyses. cDNA libraries 129 

were prepared using the Clontech Ultra Low v4 kit (Clontech) in accordance with the manufacturer’s 130 

instructions at the New York Genome Center. cDNA was ligated to Illumina Nextera XT sequencing 131 

adapters and amplified by PCR (using 13 cycles). Final libraries were evaluated using Qubit Fluorometer 132 

(Invitrogen) and Fragment Analyzer (Advanced Analytics) before sequencing on an Illumina HiSeq2500 133 

sequencer (v4 chemistry) using 2 x 50bp cycles. Reads were aligned to the Ensembl GRCz10 reference 134 

using STAR aligner v2.4.2a (PMID:23104886). Quantification of genes annotated in Ensembl v81 was 135 

performed using featureCounts (from Subread v1.4.3-p1) (doi:10.1093/bioinformatics/btt656). QC were 136 

collected with Picard (v1.77) and RSeQC (2.6.1) (PMID: 22743226) 137 

(http://broadinstitute.github.io/picard/). Normalization and differential expression analysis of 138 

featureCounts was done using DESeq2 package (v1.14.1). p-values were adjusted using the Benjamini-139 

Hochberg algorithm to control the false discovery rate (FDR). A heatmap of the expression patterns of all 140 

differentially expressed genes was generated using the ‘pheatmap’ package in R (Kolde 2019) to visually 141 
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express the similarities/dissimilarities in gene expression patterns between the individual brains 142 

sampled.  143 

2.3 RNA-seq validation and replication using RT-qPCR 144 

Housekeeping genes for validation RT-qPCR analyses were selected out of the transcriptomic 145 

dataset following the methods outlined in Dheilly et al. (2015). Briefly, we filtered for genes that had: (i) 146 

no differential expression with fluoxetine or paroxetine exposure, (ii) a coefficient of variation less than 147 

0.05, (iii) a log fold change of 0 (±0.05), and (iv) a mean Transcripts Per Million (TPM) greater than 100. 148 

We randomly selected from the pool of genes that satisfied these constraints and used the genes Myc 149 

associated factor X (max), transmembrane p24 trafficking protein 10 (tmed10) and dihydrolipoamide 150 

(dldh) as housekeeping genes for RT-qPCR assays. Reference gene stability was controlled by plotting the 151 

log ratio of the mean Ct divided by the sample Ct (Supplemental Figure 1).  152 

Genes to validate RNA-seq results were considered good candidates if they were: (i) significantly 153 

upregulated relative to control samples in both fluoxetine and paroxetine treatment groups, (ii) had 154 

log2(fold change) > 1, and (iii) were highly expressed (mean TPM>1500). The validation genes were 155 

randomly selected from the pool of genes that satisfied the outlined criteria and included uncoupling 156 

protein 2 (ucp2), Kruppel-like factor 9 (klf9), FK506 binding protein 5 (fkbp5), forkhead box k1 (foxk1), 6-157 

phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4b (pfkfb4b), and serine/threonine kinas 35 158 

(stk35).  159 

We validated RNA-sequencing results by assaying candidate gene expression in the same 160 

samples sent for RNA-sequencing using RT-qPCR. Breifly, we synthesized cDNA (SuperScript II reverse 161 

transcriptase, Invitrogen) and performed RT-qPCR with a QuantStudio 6K Flex using Absolute qPCR SYBR 162 

Green (Thermo Scientific). We normalized target gene expression to the geometric mean of all three 163 

housekeeping genes for each sample, and used the ΔΔCt method (Livak and Schmittgen 2001) to 164 
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determine the relative fold change of target genes and analyzed using a one-way ANOVA followed by a 165 

Tukey’s Honest Significance post-hoc test.  166 

2.4 Weighted gene co-expression network analysis (WGCNA)  167 

A weighted gene co-expression network analysis was conducted using the WGCNA package in R 168 

(Zhang and Horvath 2005). Briefly, the transcriptome dataset was filtered to retain the 17,387 169 

transcripts that had detectable expression in all biological replicates. The network was derived using a 170 

soft threshold of 9 as a weight function based on a plateau in the generated scale independence curve. 171 

This threshold was used to create an adjacency matrix based on the correlation of expression between 172 

any pair of two genes among all the samples. This correlational adjacency matrix was used to generate a 173 

topological overlap matrix. Using this topological overlap matrix, a complete linkage clustering function 174 

organized genes into modules of highly connected genes into a network that was then cut using the 175 

dynamic tree cut algorithm with a deep split of 2 and a minimum module size of 30. Modules of genes 176 

whose overall expression correlate to exposure to fluoxetine only, paroxetine only, or to both SSRIs 177 

were identified by correlating module eigengene values (i.e. the first principle component of the 178 

module) to SSRI treatment.  179 

2.5 Functional enrichment analysis 180 

Functional groups and biological pathways over-enriched in our genes of interest were identified 181 

using gProfiler with the custom g:SCS significance threshold to control for multiple comparisons and a 182 

corrected p-value cutoff of 0.05 (Raudvere et al. 2019). We leveraged biological pathway databases, 183 

including Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome 184 

(REAC), and the Human Phenotype Ontology (HPO) databases to assign known functions, associated 185 

pathways, and associated human disease conditions to our genes of interest. Functional analyses were 186 

run on the list of all differentially expressed genes identified from DESeq2 (henceforth referred to as the 187 
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DE gene list), and genes from WGCNA modules that correlated to SSRI exposure (henceforth referred to 188 

as the module gene list).  189 

3. Results 190 

3.1 RNA-seq results 191 

In total, we measured the expression of over 27,000 genes in individual larval zebrafish brains. 192 

Differential expression analysis using DESeq2 found 1518 genes that were significantly differentially 193 

expressed from control brains with paroxetine treatment. Of these differentially expressed genes, 58 % 194 

were significantly downregulated with 885 out of the 1518 genes showing decreased expression 195 

compared to controls and 633 genes significantly upregulated with paroxetine exposure. Differential 196 

expression analysis identified 170 genes that were significantly different from controls in the fluoxetine 197 

treatment group. Like paroxetine exposure, 60 % of the fluoxetine responsive transcripts were 198 

downregulated, with 102 genes showing decreased expression and 68 genes with increased expression 199 

with fluoxetine exposure. Between the two SSRI treatments, there were 1550 unique genes that were 200 

differentially expressed, including 138 genes in common between fluoxetine and paroxetine treatment. 201 

All 138 of these common genes were consistent in the direction of expression change regardless of the 202 

drug to which larvae were exposed (Figure 1).  203 
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 204 

Figure 1. A) Heatmap of the 1550 genes significantly differentially expressed with SSRI treatment. Columns 205 
correspond to individual brains, indicated by the serial numbers at the bottom, consisting of a letter code (C = 206 
Control, F= Fluoxetine-treated, and P = Paroxetine-treated) and an identifying number. Rows correspond to the 207 
relative expression (log2 fold change relative to control larvae) of individual genes with warm colors representing 208 
significant upregulation and dark colors representing significant downregulation. B) Over 1500 genes that were 209 
differentially expressed with fluoxetine or paroxetine exposure, 138 of which were shared between the two drugs. 210 

3.2 RNA-seq validation using RT-qPCR 211 

TPM values of all 6 selected genes from the RNA-seq data show significant increases relative to 212 

control samples with fold changes ranging from 1.5 to 2.7, which closely mirrors those observed in the 213 

sequencing data and verifies our sequencing results (Figure 2). RT-qPCR assays confirmed that 214 

paroxetine treatment resulted in a significant (p < 0.001) increase in expression of all selected genes 215 

except for klf9, which still showed a highly upregulated pattern (2.46-fold increase) despite lack of 216 

significance. In contrast, RT-qPCR was not successful at detecting a significantly altered expression 217 

following fluoxetine treatment, though a consistent upregulated trend was observed for all selected 218 

genes with fold changes ranging from 1.64 to 3.44.  219 
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 220 

Figure 2. A) fold change of selected validation genes (calculated from TPM values) from RNA-seq data (n=6) shows 221 
significant upregulation of all 6 validation genes with both fluoxetine and paroxetine exposure. B) Relative fold 222 
change generated from RT-qPCR assays on the same samples used for RNA-seq show consistent upregulation 223 
trends in the validation genes. Significance code is as follows: * < 0.05, ** < 0.01, *** < 0.001. 224 

 225 

3.3 Weighted gene co-expression network analysis (WGCNA)  226 
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 227 

Figure 3. Gene co-expression network generated by our network analysis, which groups genes based on expression 228 
similarity using a pair-wise weighted correlation metric, and clusters according to a topological overlap metric into 229 
modules (colored bars on bottom).  230 

WGCNA analysis generated a network containing 19 modules of genes (Figure 3; color coded 231 

bars on bottom), with modules ranging in size from 51 to 7133 genes per module (Table 1). Seven 232 

modules were significantly correlated with SSRI treatment (Table 1, bolded). Modules 5, 6, 11, 14, and 233 

15, were found to be significantly correlated with both fluoxetine and paroxetine exposure whereas 234 

module 17 was significantly correlated with fluoxetine treatment only and module 12 was significantly 235 

correlated with paroxetine exposure only. Modules 5 and 15 collectively contained over 96 % of the 236 

module genes that were significantly correlated with SSRI treatment.  237 

Table 1. WGCNA module sizes and their Pearson Correlation Coefficient between module gene expression patterns 238 
and exposure to fluoxetine, paroxetine, or both SSRIs. Modules that are significantly correlated with 239 
pharmaceutical exposure are bolded. Colored boxes next to the Module number corresponds to the color bar at 240 
the bottom of Figure 3.  241 

Fluoxetine Paroxetine Both SSRIs 

Module # genes Corr. p-value Corr. p-value Corr. p-value 

1 61 -0.11 0.7 -0.2 0.4 -0.3 0.2 
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2 91 -0.087 0.7 -0.32 0.2 -0.4 0.1 

3 53 -0.14 0.6 -0.076 0.8 -0.22 0.4 

4 400 -0.017 0.9 -0.25 0.3 -0.27 0.3 

5 7133 -0.23 0.4 -0.36 0.1 -0.59 0.01 

6 112 -0.028 0.9 -0.79 9.00E-05 -0.82 3.00E-05 

7 94 -0.34 0.2 0.44 0.07 0.1 0.7 

8 53 -0.27 0.3 0.03 30.9 -0.24 0.3 

9 542 -0.22 0.4 0.38 0.1 0.16 0.5 

10 174 -0.22 0.4 0.08 0.8 -0.14 0.6 

11 57 -0.52 0.03 0.47 0.05 -0.05 0.8 

12 51 -0.099 0.7 0.48 0.05 0.38 0.1 

13 547 0.034 0.9 0.23 0.4 0.26 0.3 

14 80 0.14 0.6 0.61 0.008 0.74 4.00E-04 

15 2908 0.13 0.6 0.48 0.05 0.61 0.007 

16 1090 0.026 0.9 0.26 0.3 0.28 0.3 

17 68 0.52 0.03 -0.23 0.4 0.3 0.2 

18 1760 0.13 0.6 0.077 0.8 0.21 0.4 

19 296 0.17 0.5 0.079 0.8 0.25 0.3 

 242 

3.4 Functional profiling of differentially expressed and WGCNA module genes 243 

Functional enrichment analysis of the DE gene list resulted in 64 GO terms that were 244 

significantly enriched (Figure 4; full list of results in Supplemental Table 1). Only three molecular 245 

function GO terms were enriched in the DE gene list: neurexin family protein binding, catalytic activity 246 

acting on RNA, and transcription coregulatory activity. Enriched biological processes included relatively 247 

broad terms such as RNA processing, protein folding, and various compound-specific metabolic 248 

processes. A large portion of the cellular component GO terms that were enriched in these groups 249 
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involved many aspects of the mitochondria; for example, the mitochondrial matrix, mitochondrial 250 

protein complex, mitochondrial ribosome, or the inner mitochondrial membrane protein complex.  251 

In addition to GO terms, functional enrichment analysis identified 16 different pathway terms 252 

associated with the DE gene list (Table 2), including one KEGG pathway (fatty acid elongation) and 253 

multiple Reactome pathways, most of which involved mitochondrial or electron transport chain 254 

processes. HPO enrichment found multiple human disease phenotypes related to this gene list, including 255 

neurodevelopmental delay and abnormality and muscle physiology.  256 

 257 

Figure 4. Manhattan plot of all significantly enriched Gene Ontology (GO) terms in the DE gene list. Functional 258 
terms (colored circles) are arbitrarily distributed along the unitless x-axis, which is divided into different GO 259 
categories (GO:MF = molecular function, GO:BP = biological process, GO:CC = cellular component). Functional 260 
term positions are fixed and terms from the same GO subtree are located closer to each other. Y-axis represents the 261 
corrected p-value associated with term enrichment on a -log10 scale and circle sizes reflect the size of the term (i.e. 262 
terms with more genes known to be associated with them are larger). Functional enrichment analysis found 3 MF 263 
terms, 21 BP terms, and 39 CC terms significantly enriched in DE genes.  264 

We also conducted a functional enrichment analysis of the seven modules that were 265 

significantly correlated with SSRI exposure. Modules 5 and 15 were the only modules that had significant 266 

enrichment of GO terms, as well as various KEGG, Reactome, and HPO terms. Despite its much smaller 267 

size, Module 11 had several KEGG and Reactome terms that were significantly enriched (Table 2 and 268 

Supplemental Table 4). All remaining modules did not return any GO or pathway terms that were 269 

significantly enriched and are not included in subsequent discussions. Between the three retained 270 

modules, functional enrichment analysis produced a combined list of 399 GO terms (Figure 5 and 271 
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Supplemental Tables 2 and 3), along with 9 KEGG pathways, 48 Reactome pathways, and 130 HP 272 

ontology terms that were significantly enriched between the three modules (Table 2).   273 

 274 

Figure 5. Manhattan plot of all significantly enriched Gene Ontology (GO) terms in WGCNA modules 5 (A) and 11 275 
(B), which were the only 2 modules that were significantly enriched in GO terms. Functional terms (colored circles) 276 
are arbitrarily distributed along the unitless x-axis, which is divided into the different GO categories (GO:MF = 277 
molecular function, GO:BP = biological process, GO:CC = cellular component). Term positions are fixed and terms 278 
from the same GO subtree are located closer to each other. Y-axis represents the corrected p-value associated with 279 
term enrichment on a -log10 scale and circle sizes reflect the size of the term (i.e. terms with more genes known to 280 
be associated with them are larger). Functional enrichment analysis found 18 MF terms, 96 BP terms, and 90 CC 281 
terms that were significantly enriched in Module 5 genes, and 26 MF terms, 128 BP terms, and 48 CC terms that 282 
were significantly enriched in Module 15 genes.  283 

Module 5 was significantly enriched in a total of 204 GO terms (Figure 5a). Enriched molecular 284 

function terms include various enzyme activities like ATP synthesis, as well as RNA metabolism (e.g. RNA 285 

binding and transcription coregulator activity) and neural related functions like neuropeptide hormone 286 

activity. There were many enriched biological process terms involved with RNA processing (e.g. mRNA 287 

processing, RNA splicing, and gene expression), mitochondria and energy production (e.g. mitochondrial 288 

organization, mitochondrial ATP synthesis coupled electron transport, and mitochondrial protein 289 

localization), and neurobiology (e.g. neurogenesis, regulation of synaptic transmission, and neuron 290 
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differentiation). Similarly, there were a number of cellular component terms associated with RNA 291 

metabolism (e.g. ribosome components, ribonucleoprotein complex, and RNA polymerase complex), 292 

mitochondria (e.g. the mitochondrial matrix, mitochondrial respiratory chain complex I, or ATP synthase 293 

complex), and neurons (e.g. synapses and neural projections).  294 

Module 15 was significantly enriched in 202 GO terms and shared many similar enriched terms 295 

as Module 5 (particularly neurodevelopmental processes), however there was no prominent enrichment 296 

of mitochondrial or energy metabolism terms (Figure 5b). Molecular function terms that were 297 

significantly enriched included nucleic acid binding, transcription coregulator/corepressor activity, and 298 

histone demethylase activity, among others. Enriched biological processes included many 299 

neurodevelopmental terms (such as neurogenesis, axon guidance, and neuron projection development) 300 

but also included terms involved in general embryonic development such as canonical Wnt signaling, 301 

embryonic eye development, and anatomical structure development. Similarly, enriched cell component 302 

terms included various different neural components like axons or synaptic membrane as well as nuclear 303 

structures like chromatin, chromosomes, and the nucleus.  304 

 305 
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Table 2. Selected results from functional analyses of interested gene sets, including the DE gene list and WGCNA modules significantly correlated to SSRI 306 
exposure, that were significantly enriched in pathways related to neurodevelopment or mitochondrial function when searched against the Kyoto Encyclopedia 307 
of Genes and Genomes (KEGG), Reactome, and Human Phenotype Ontology (HP) databases. Full results of functional analyses are available in Supplemental 308 
Tables 1-4 309 

Gene List # genes Database Pathway ID Corrected p-value 

All DE genes  29 REAC Mitochondrial translation REAC:R-DRE-5368287 2.09E-09 

16 REAC Respiratory electron transport REAC:R-DRE-611105 0.042 

178 HP Neurodevelopmental abnormality HP:0012759 0.012 

143 HP Neurodevelopmental delay HP:0012758 0.013 

Module 5  60 REAC Respiratory electron transport REAC:R-DRE-611105 1.53E-10 

870 HP Neurodevelopmental abnormality HP:0012759 2.21E-08 

38 HP Abnormal activity of mitochondrial respiratory chain HP:0011922 7.34E-06 

1122 HP Abnormality of nervous system physiology HP:0012638 1.02E-05 

37 HP Decreased activity of mitochondrial respiratory chain HP:0008972 1.66E-05 

789 HP Abnormality of brain morphology HP:0012443 1.77E-05 

81 HP Abnormality of mitochondrial metabolism HP:0003287 0.0001 

Module 11  4 KEGG Phototransduction KEGG:04744 6.08E-06 

5 REAC Inactivation, recovery and regulation of the 

phototransduction cascade 

REAC:R-DRE-2514859 3.14E-05 

2 REAC Serotonin and melatonin biosynthesis REAC:R-DRE-209931 0.039 

Module 15  75 REAC Axon guidance REAC:R-DRE-422475 5.65E-05 

416 HP Neurodevelopmental abnormality HP:0012759 7.27E-09 

439 HP Abnormality of nervous system morphology HP:0012639 7.94E-07 

517 HP Abnormality of nervous system physiology HP:0012638 8.53E-06 
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4. Discussion 310 

4.1 Comparative transcriptomics between 2 SSRIs 311 

We identified 138 genes differentially expressed by both drug treatments, all of which agree in 312 

the direction of effect (i.e. no drug caused an up regulation while the other caused down regulation) 313 

(Figure 1b). This core demographic of shared genes may represent the common targets of general SSRI 314 

treatments while the difference in the number of genes affected may reflect drug specific parameters, 315 

such as biological half-lives, binding affinities, metabolite activities, etc. (Vandenberg 1995). While there 316 

is a large discrepancy between the number of genes that are differentially expressed with fluoxetine and 317 

paroxetine exposure, our results are not atypical from other comparisons of SSRI effects in zebrafish. A 318 

study in adult zebrafish exposed to similar concentrations of fluoxetine found a comparable number of 319 

differentially expressed genes as our study (Wong, Oxendine, and Godwin 2013). Similarly, a 320 

comparative study between 2 SSRIs (fluoxetine and sertraline) in whole body larval zebrafish found a 321 

similar number of differentially expressed genes with fluoxetine treatment and showed a large 322 

discrepancy in the number of genes affected by fluoxetine and sertraline, another SSRI antidepressant 323 

(Park et al. 2012). These studies, in addition to ours, may further support the idea that individual drugs, 324 

despite being the same class with presumably the same mechanism of action, can have variable effects 325 

on the same system (Vandenberg 1995).  326 

RT-qPCR assays in the same RNA samples used for RNA-sequencing generally showed 327 

comparable expression patterns to the RNA-sequencing results, validating our sequencing dataset. 328 

Paroxetine exposure caused a significant upregulation in 5 out of 6 selected biomarker genes with 329 

similar fold changes relative to control samples regardless of molecular technique used to assay their 330 

expression (Figure 2). Klf9 was the only gene that was not significantly upregulated with paroxetine 331 

exposure when assayed by RT-qPCR; however, the upregulation patterns were still present at a similar 332 



19 

 

fold changes as observed in the sequencing data. Similarly, RT-qPCR detected a general upregulation 333 

pattern with fluoxetine exposure; however, none of the genes were significantly different from controls. 334 

This difference in statistical significance is likely a result of variable levels of sensitivities between the 335 

two methods, which could arise from a multitude of sources including differences in reaction chemistry, 336 

detection limits, and data analysis pipelines (Alexander-Dann et al. 2018).  337 

4.2 Functional profiling identifies mitochondrial and neurogenic pathways involved with SSRI exposure 338 

The DE gene list was particularly enriched in mitochondrial related GO terms and Reactome 339 

pathways, indicating that mitochondria might have a large role in the zebrafish’s response to SSRI 340 

exposure (Figure 4, Table 2). Additionally, functional analysis identified neuropeptide hormone activity 341 

as well as several human neurological disease conditions that were associated with this gene list. 342 

Likewise, functional enrichment analysis of Module 5 and Module 15 genes identified many 343 

mitochondrial and neurodevelopment related GO terms and pathways (Figure 5, Table 2) and terms 344 

related to general early development like anatomical structure development and canonical Wnt 345 

signaling. Previous studies have found that SSRI exposure in isolated mitochondria disrupts cellular 346 

energy metabolism by uncoupling oxidative phosphorylation and inhibiting mitochondrial complexes I 347 

and V, causing a depletion in cellular ATP (Li et al. 2012). Disruption of mitochondrial energy supplies 348 

can alter key neurodevelopmental processes like cellular remodeling, neurogenesis, synaptogenesis, and 349 

circuit formation (Chen et al. 2013). All together, these functional profiling results suggest that 350 

developmental exposure to SSRIs might cause mitochondrial dysfunction, resulting in altered energy 351 

production within brain tissue cells and subsequent changes in neurodevelopment and neural 352 

morphology. A study using rats as model organisms lead to similar conclusions. Perinatal exposure to 353 

paroxetine alters the expression of genes involved in cellular metabolism and neurogenesis, which 354 

increases the risk of developing depressive like symptoms and other neurological disorders as adults 355 

(Glover et al. 2015). 356 
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While we did not select our validation genes based on published research, our selection criteria 357 

resulted in the identification of key genes that have been implicated in SSRI response and/or 358 

neurodevelopment in other studies. Fkbp5, encoding the glucocorticoid receptor chaperone FK506 359 

binding protein 51, has been identified in previous studies as a promising target to assess the risk of 360 

developing neurological disorders and for treating depression and was highly upregulated with SSRI 361 

exposure in our dataset (Pohlmann et al. 2018; Ellsworth et al. 2013; Park et al. 2012; Wong, Oxendine, 362 

and Godwin 2013). In humans, overexpressed genetic variants of fkbp5 are associated with a decrease in 363 

glucocorticoid receptor sensitivity to cortisol and prolonged stress hormone circulation. This ultimately 364 

over-activates immune responses, increasing oxidative stress in key brain regions, and contributes to 365 

neurological disease pathogenesis (Sadoul et al. 2018; Nold et al. 2019; Zhang et al. 2016). The role of 366 

fkbp5 regulators was functionally tested in mice and demonstrated the importance of this gene in 367 

neurogenesis and neuronal development (Zheng et al. 2016). We speculate that the upregulation of 368 

fkbp5 we observed in developing zebrafish in response to paroxetine and fluoxetine could result in 369 

higher cortisol levels or oxidative stress. This could lead to mitochondrial damage and subsequent 370 

effects on neurodevelopment that would explain the enrichment in GO terms associated with various 371 

aspects of neurodevelopment. 372 

Ucp2 was highly upregulated with SSRI exposure in our dataset. This could be an indication of 373 

mitochondrial dysfunction and altered neurodevelopment. Ucp2 encodes mitochondrial uncoupling 374 

protein 2, an important regulator of mitochondrial metabolism that controls ATP and reactive oxygen 375 

species production (Ji et al. 2017). In mammalian systems, Ucp2’s antioxidant activity has been directly 376 

linked to neurogenesis and mitochondrial respiration. Ucp2 knockout mice show more severe 377 

depressive symptoms in response to chronic mild stress and have decreased neurogenesis and 378 

enhanced loss of astrocytes and dendritic spines, which are partially rescued by transiently expressing 379 

Ucp2 (Dietrich, Andrews, and Horvath 2008; Du et al. 2016). While the neurodevelopmental role of ucp2 380 
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has not yet been established in zebrafish, fish ucp2 is highly similar to its mammalian orthologs (76-78 % 381 

similarity) and likely performs similar functions (Wen et al. 2015). Upregulation of ucp2 in response to 382 

SSRI exposure, together with the enrichment in mitochondrial and neural cell components, as well as 383 

mitochondrial, respiratory, and neurodevelopmental biological processes is in accordance with the 384 

known? effect of SSRIs on neurogenesis and mitochondrial respiration. These results might provide 385 

mechanistic insight into the behavioral effects of SSRI exposure on fish observed in previous studies. 386 

While our results agree with previous research on the impact of SSRI on fkbp5 and ucp2, and on their 387 

role in mitochondrial respiration and neurodevelopment, experimental manipulations are needed to 388 

functionally confirm the role of these genes as well as the overall mechanism of action.  389 

4.3 Technical considerations  390 

Previous studies have tested the effect of SSRIs on zebrafish. A brain tissue-specific RNA-391 

sequencing study in adult zebrafish found that fluoxetine predominantly affected metabolic processes 392 

(lipid metabolism in particular) in their functional enrichment analysis (Wong, Oxendine, and Godwin 393 

2013). Differences in pathways identified between our studies may be attributed to differences in the 394 

life-stages studied. Early development is a dynamic period of cellular activity and growth, and even 395 

subtle changes to key processes like neurodevelopment or neural plasticity, which very well may be the 396 

source of SSRIs’ therapeutic effects in affected adults, will be more easily observed in a developing 397 

embryo (Glover et al. 2015). In whole larval zebrafish, fluoxetine was found to impact mostly molecular 398 

regulation of transcription and translation, and only a few general developmental processes were 399 

impacted (Park et al. 2012). But, recent research that has shown that sequencing composite structures 400 

(e.g. gross anatomical structures like the head or abdomen that contain a variety of tissue types) can 401 

result in high noise to signal ratios as they are accumulating gene expression signals over many tissues 402 

types that could have a variety of expression patterns (Johnson, Atallah, and Plachetzki 2013), which led 403 

us to study brain tissue only. However, while we reduced background noise and identified pathways 404 
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involved in neurodevelopment, the brain is highly heterogenous in expression patterns and different 405 

brain regions may exhibit divergent patterns of expression. Therefore, our use of whole brain tissue may 406 

have masked more nuanced expression patterns in more specific brain regions (Wang and Wang 2019). 407 

Focusing on specific brain regions or performing single cell analysis would likely yield different results 408 

and should be pursued in future studies.   409 

In order to further enhance the resolution of this study, we capitalized on current low-input 410 

sequencing methods to sequence individual larval brains instead of pooling biological replicates. Pooling 411 

across biological replicates is a common strategy for comparative transcriptomics studies when RNA 412 

quantities are limited and has been used previously for testing the effect of SSRIs on zebrafish (Wong, 413 

Oxendine, and Godwin 2013; Huang et al. 2017; Wu et al. 2017). However, pooling does not encompass 414 

potential population variability, and by averaging the signal, pooling can lead to lists of differentially 415 

expressed genes that have low positive predictive value (Rajkumar et al. 2015; Mary-Huard et al. 2007; 416 

Shih et al. 2004). While zebrafish are common model species, there is still considerable genetic diversity 417 

within laboratory strains that encouraged us to attempt to fully capture the extent of individual 418 

variation (Guryev et al. 2006). As seen in Figure 1, controls and exposed individuals mostly clustered 419 

separately, which allowed us to identify genes differentially impacted by SSRI treatments. However, 420 

some controls appeared more similar to SSRI-exposed individuals, and two SSRI-exposed individuals 421 

clustered more closely to controls, suggesting that inter-individual variations could indeed alter the 422 

effect of SSRIs. That being said, the observed variations could alternatively result from technical 423 

variability. Indeed, biological and technical variability are confounded in our study design. Technical 424 

variation from low-input sequencing methods like SMART-seq can be quite high – particularly for 425 

amplification based sequencing methods (Marinov et al. 2014; McIntyre et al. 2011; Tung et al. 2017). 426 

Even though brain dissections were conducted under the same laboratory conditions, by the same 427 

individuals, the precision required for the dissection increases the chance of technical variation. While it 428 
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would be impossible to remove all potential sources of technical variations, the impact of SSRIs on the 429 

expression of key target genes should be further tested in a greater number of individuals in order to 430 

even better account for potential inter-individual variation in responses.  431 

Finally it is important to note, we used 100 µg/L of SSRIs with daily renewal, a dosage that 432 

causes robust and consistent behavioral effects (Huang, Sirotkin, and McElroy 2019), but is rarely seen in 433 

surface water measurements and thus is not representative of average environmental exposures 434 

(typically, in pg-ng/L)(Fick et al. 2009). The high dose was chosen for this study to facilitate signal 435 

detection and pathway identification, but future work should now focus on key target genes to test fish 436 

sensitivity and dose responsiveness in a more environmentally realistic context. 437 

5. Conclusions 438 

 Herein, we have leveraged modern molecular and data analysis techniques to provide the first 439 

tissue-specific transcriptomic study of the effects of SSRIs in developing zebrafish. By focusing on tissues 440 

known to be transcriptionally active during early development and maintaining the independence of 441 

biological replicates, we were able to conduct high resolution toxicogenomic evaluation of a popular 442 

class of drug, SSRI antidepressants, whose mechanism of action still evades us. Our study identified 1550 443 

genes differentially expressed with SSRI treatment in larval zebrafish brain tissue and revealed the 444 

possible role of mitochondrial dysfunction and neurodevelopment in SSRI mechanism of action, which 445 

was confirmed by the use of network-based approaches. Now, complementary studies can be designed 446 

to test further the role of identified genes and pathways, to compare inter-individual responses and 447 

assess dose responsiveness. 448 
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